

BASIC ELECTRONICS ENGINEERING

1

UNIT III

DIGITAL ELECTRONICS

Overview of Number Systems, Logic gates including Universal Gates, BCD codes, Excess-3 code,
Gray code, Hamming code. Boolean Algebra, Basic Theorems and properties of Boolean Algebra,
Truth Tables and Functionality of Logic Gates – NOT, OR, AND, NOR, NAND, XOR and XNOR. Simple
combinational circuits–Half and Full Adders. Introduction to sequential circuits, Flip flops,
Registers and counters (Elementary Treatment only).

INTRODUCTION:
 Electronic circuits and systems are of two kinds. They are analog and digital. The
distinction between them is not so much in the types of semiconductor devices used in these
circuits as it is in voltage and current variations that occur when each type of circuit performs the
function for which it is designed.
 Analog circuits are those in which voltages and currents vary continuously through the
given range. They can take infinite values within the specified range.
 Digital circuit is one in which the voltage levels assume a finite number of distinct values.
In virtually all modern digital circuits, there are just two discrete voltage levels.
 Digital circuits are also called logic circuits, because each type of digital circuit obeys a
certain set of logic rules. The manner in which a logic circuit responds to an input is referred to as
the circuit's logic.
 Digital systems are used extensively in computation and data processing, control systems,
communications and measurement. Digital systems have it number of advantages over analog
systems.

ADVANTAGES OF DIGITAL SYSTEMS OVER ANALOG SYSTEMS

➢ Digital systems are easier to design
➢ These are small in size and simple operation(LOW or HIGH)
➢ Information storage is easy
➢ Accuracy and precision are greater
➢ Digital systems are more versatile
➢ Digital circuits are less affected by noise, temperature etc.,
➢ Reliability is more
➢ Requires less space & cost is low(Chips).
➢ Speed is high.

Example:

BASIC ELECTRONICS ENGINEERING

2

Applications of Digital systems:

➢ Cameras
➢ Recorders(Audio & Video)
➢ Telephone systems
➢ Traffic Lights
➢ Computers, TVs, DVDs etc.,
➢ Elevator Display
➢ Digital thermo meter
➢ Digital watch

TYPES OF NUMBER SYSTEMS
 i) Decimal Number System
 ii) Binary Number System
 iii) Octal Number System
 iv) Hexadecimal Number System

i) DECIMAL NUMBER SYSTEM
 The decimal number system contains ten unique symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
Since counting in decimal involves ten symbols, we say that its base or radix is ten. There is no
symbol for its base, i.e. for ten. In this system, any number (integer, fraction, or mixed) of any
magnitude can be represented by the use of these ten symbols only. Each symbol in the number is
called a digit.
Example:
When we write a decimal number say 5678.9, we know it can be represented as

5000+600+70+8+0.9=5678.9
The decimal number 5678.9 can also be written as (5678.9)10, where the 10 subscript indicates
the radix or base.

 This says that, the position of a digit with reference to the decimal point determines its
value/weight. The sum of all the digits multiplied by their weights gives the total number being
represented. The leftmost digit, which has the greatest weight is called the most significant
digit/bit(MSD or MSB) and the rightmost digit, which has the least weight, is called the least
significant digit/bit(LSD or LSB).

BASIC ELECTRONICS ENGINEERING

3

In general, the value of any mixed decimal number

is given by

EX:

ii) BINARY NUMBER SYSTEM
 The binary number system is a positional weighted system. The base or radix of this
number system is 2. Hence, it has two independent symbols. The base itself cannot be a symbol.
The symbols used are 0 and 1. A binary digit is called a bit. A binary number consists of a
sequence of bits, each of which is either it 0 or it 1.
 In general, a binary number with an integer part of (n + 1) hits and a fraction part of ‘k’ bits
can be written as

 However in binary system, weight is expressed as a power of 2 as shown in Fig.

EX: Represent the binary number 1101.101 in power of 2 and find its decimal equivalent.
SOL:

BASIC ELECTRONICS ENGINEERING

4

iii) OCTAL NUMBER SYSTEM
 We know that the base of the decimal number system is 10 because it uses the digits 0 to 9,
and the base of binary number system is 2 because it uses digits 0 and 1. The octal number system
uses first eight digits of decimal number system : 0, 1, 2, 3, 4, 5, 6, and 7. As it uses 8 digits, its base
is 8.

EX: Represent octal number 567 in power of 8 and find its decimal equivalent.

iv) HEXADECIMAL NUMBER SYSTEM
 The hexadecimal number system has a base of 16 having 16 digits : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E and F. It is another number system that is particularly useful for human
communications with a computer. Although it is somewhat more difficult to interpret than the

octal number system, it has become the most popular. Since its base is a power of 2 (24), it is easy
to convert hexadecimal numbers to binary and vice versa.
 The following table shows the relationship between decimal, binary and hexadecimal. Note
that each hexadecimal digit represents a group of four binary digits, called nibbles, which are
fundamental parts of larger binary words.

BASIC ELECTRONICS ENGINEERING

5

EX: Represent the hexadecimal number 3FD in power of 16 and find its decimal equivalent.
SOL:

Counting in Radix or Base (r)
 We know that the number systems with radix (base) ‘r’ equal to 10, 2, 8 and 16. Each
number system has ‘r’ set of characters. For example, in decimal number
system ‘r’ equals to 10 has 10 characters from 0 to 9, in binary number system ‘r’ equals to 2 has 2
characters 0 and 1 and so on. In general we can say that, a number represented in radix r, has r
characters in its set and r can be any value. This is illustrated in the following Table.

BASIC ELECTRONICS ENGINEERING

6

NOTE :
The classification of individual bits into larger groups is generally referred to by the following
more common names of:

BASIC ELECTRONICS ENGINEERING

7

NUMBER BASE CONVERSIONS
CASE-(i): Binary to Decimal Conversion

1) Convert 101012 to decimal

2) Convert 11011.1012 to decimal

CASE-(ii): Octal to Decimal Conversion

3) Convert 4057.068 to decimal

4) Convert 1728 to decimal

CASE-(iii): Hexadecimal to Decimal Conversion

5) Convert 5C716 to decimal

6) Convert A0F9.0EB16 to decimal

BASIC ELECTRONICS ENGINEERING

8

CASE-(iv): Decimal to Binary Conversion
 In this method, the decimal integer number is converted to the binary integer
number by successive division by 2, and the decimal fraction is converted to binary fraction by
successive multiplication by 2. This is also known as the double-dabble method. In the
successive division-by-2 method, the given decimal integer number is successively divided by 2
till the quotient is zero. The last remainder is the MSB. The remainders read from bottom to toll
give the equivalent binary integer number. In the successive nutltiplication-by-2 method, the
given decimal fraction and the subsequent decimal fractions are successively multiplied by 2, till
the fraction part of the product is 0 or till the desired accuracy is obtained. The first integer
obtained is the MSB. Thus, the integers read from top to bottom give the equivalent binary
fraction.
 To convert a mixed number to binary, convert the integer and fraction parts separately to
binary and then combines them.

7) Convert 5210 to binary

BASIC ELECTRONICS ENGINEERING

9

8) Convert 105.1510 to binary

BASIC ELECTRONICS ENGINEERING

10

CASE-(v): Decimal to Octal Conversion

9) Convert 378.9310 to Octal

CASE-(vi): Decimal to Hexadecimal Conversion

10) Convert 2598.67510 to Hexadecimal

BASIC ELECTRONICS ENGINEERING

11

CASE-(vii): Binary to Octal Conversion
 To convert a binary number to an octal number, starting from the binary point make

groups of 3 bits (8=23) each, on either side of the binary point and replace each 3-bit binary group
by the equivalent octal digit.

11)

SOL:

12)

SOL:

CASE-(viii): Binary to Hexadecimal Conversion
 To convert a binary number to a hexadecimal number, starting from the binary point make

groups of 4 bits (16=24) each, on either side of the binary point and replace each 4-bit binary
group by the equivalent octal digit.

13)

SOL:

BASIC ELECTRONICS ENGINEERING

12

14)

SOL:

CASE-(ix): Octal to Binary Conversion
 To convert a given octal number to a binary number, just replace each octal digit by its 3-
bit binary equivalent.

15) Convert 367.528 to binary
SOL:

16) Convert 7778 to binary
SOL:

 (777)8 = (111111111)2

CASE-(x): Hexadecimal to Binary Conversion
 To convert a given hexadecimal number to a binary number, just replace each hex digit by
its 4-bit binary group.

17) Convert 4BAC16 to binary

18) Convert 3A9E.B0D16 to binary

BASIC ELECTRONICS ENGINEERING

13

CASE-(xi): Octal to Hexadecimal Conversion
 To convert an octal number to hexadecimal the simplest way is to first convert the given
octal number to binary and then binary number to hexadecimal.

19) Convert 756.6038 to hexadecimal
SOL:

CASE-(xii): Hexadecimal to Octal Conversion
 To convert a hexadecimal to an octal number the simplest way is to first convert the given
hexadecimal number to binary and then binary number to octal.

20) Convert B9F.AE16 to Octal

BINARY CODED DECIMAL (BCD)
 (or) (NATURAL BCD CODE) (or) 8421 BCD CODE

 BCD is a numeric code in which each digit of a decimal number is represented by a separate
group of bits. The most common BCD code is 8-4-2-1 BCD, in which each decimal digit is
represented by a 4-bit binary number. It is called 8-4-2-1 BCD because the weights associated
with 4 bits are 8-4-2-1 from left to right. This means that, bit 3 has weight 8, bit 2 has weight 4-bit
1 has weight 2 and bit 0 has weight 1.
 The following Table shows the 4-bit 8-4-2-1 BCD code used to represent a single decimal
digit. The 8-4-2-1 BCD code is so widely used that it is common practice to refer to it simply as
BCD.

BASIC ELECTRONICS ENGINEERING

14

 In multi digit coding, each decimal digit is individually coded with 8-4-2-1 BCD code.
EX: 58 in decimal can be encoded in 8-4-2-1 BCD as :

 As seen from the above example, in multi-digit coding of 8-4-2-1 BCD numbers we require

4-bits per decimal digit. Therefore, total 8-bits are required to encode 5810 in 8-4-2-1 BCD. When
we represent the same number (58) in binary : 1110102, we require only 6 digits. This means
that, for representing numbers, 8-4-2-1 BCD is less efficient than pure binary number system.
 The advantage of a BCD code is that it is easy to convert between it and decimal. The
principle disadvantage of a BCD, besides its low efficiency, is that arithmetic operations are more
complex than they are in pure binary.

EXCESS THREE (XS-3) CODE
 Excess-3 code is a modified form of a BCD number. The excess-3 code can be derived from
the natural BCD code by adding 3 to each coded number.
For example, decimal 12 can be represented in BCD as 0001 0010. Now adding 3 to each digit we
get Excess-3 code as 0100 0101 (12 in decimal). It is a non-weighted code.
 The following table shows excess-3 codes to represent single decimal digit. It is sequential
code because we get any code word by adding binary 1 to its previous code word as shown in the
table.

 We have seen that in BCD subtraction we have to compute 9's (or 10's) complement of the
number before subtraction. In excess-3 code we get 9's complement of a number by just
complementing each bit. Due to this excess-3 code is called self-complementing code or
reflective code.

BASIC ELECTRONICS ENGINEERING

15

GRAY CODE (REFLECTIVE CODE)
 Gray code is a non-weighted code & is not suitable for arithmetic operations. It is not a BCD
code. It is a cyclic code because successive code words in this code differ in one bit position only
i.e, it is a unit distance code. It is also a reflective code i.e, it is both reflective & unit distance.

 The ‘n’ least significant bits for 2n through 2n+1-1 are the mirror images of those for 0

through 2n-1. An N bit gray code can be obtained by reflecting an N-1 bit code about an axis at the
end of the code, & putting the MSB of 0 above the axis & the MSB of 1 below the axis. The
reflection of gray codes is shown in the following table.

Applications:
 Gray codes are used in instrumentation and data acquisition systems where linear or
angular displacement is measured.
 They are also used in shaft encoders, I/O devices, A/D converters and other peripheral
equipment.

(i) Binary to Gray code conversion:
 If an n-bit binary number is represented by Bn Bn-1 ……. B1 and its Gray code equivalent by

Gn Gn-1 ….. G1, where Bn and Gn are the MSBs, then the Gray code bits are obtained from the
binary code as follows.

Where the symbol ⊕ stands for the Exclusive OR (X-OR) operation explained below.
 The conversion procedure is as follows:

BASIC ELECTRONICS ENGINEERING

16

1. Record the MSB of the binary as the MSB of the Gray code.
2. Add the MSB of the binary to the next bit in binary, recording the sum and ignoring the carry, if
any. i.e. X-OR the bits. This sum is the next bit of the Gray code.
3. Add the 2nd bit of the binary to the 3rd bit of the binary, the 3rd bit to the 4th bit, and so on.
4. Record the successive sums as the successive bits of the Gray code until all the bits of the binary
number are exhausted.

Example:
1) Convert the binary 1001 to the gray code.
SOL:

2) Convert 10111011 in binary in to gray code.
SOL:

(ii) Gray to Binary code conversion:
 If an n-bit Gray number is represented by GnGn-1…..G1 and its binary equivalent by BnBn-

1…..B1, then binary bits are obtained from Gray bits as follows:

The conversion procedure is:
1. The MSB of the binary number is the same as the MSB of the Gray code number: record it.
2. Add the MSB of the binary to the next significant bit of the Gray code. i.e. X-OR them:
 record the sum and ignore the carry.
3. Add the 2nd bit of the binary to the 3rd bit of the Gray; the 3rd bit of the binary to the 4th bit of
the Gray code, and so on, each time recording the sum and ignoring the carry.
4. Continue this till all the Gray bits are exhausted. The sequence of bits that has been written
down is the binary equivalent of the Gray code number.

Example:
3) Convert the gray code 1101 into binary.
SOL:

BASIC ELECTRONICS ENGINEERING

17

4) Convert the gray code 101011 into binary.
SOL:

5)

ERROR DETECTING CODES
 When the digital information in binary form is transmitted & processed from one circuit to
another, an error may occur due to noise. The error may be single bit change i.e. 0 changed to 1 or
1 changed to 0. Several schemes have been devised to detect the occurrence of a single bit error in
a binary word, so that whenever such an error occurs the concerned binary word can be corrected
& retransmitted.

PARITY BIT:
 A parity bit is used for the purpose of detecting errors during transmission of binary
information. A parity bit is an extra bit included with a binary message to make the number of 1’s
is either odd or even. The message, including the parity bit is transmitted and then checked at the
receiving end for errors.

BASIC ELECTRONICS ENGINEERING

18

 An error is detected if the checked parity does not correspond with the one transmitted.
The circuit that generates the parity bit in the transmitter is called a parity generator and the
circuit that checks the parity in the receiver is called a parity checker.
 In even parity, the added parity bit will make the total number of 1’s is an even amount. In
odd parity the added parity bit will make the total number of 1’s is an odd amount.
 The following table shows the 3-bit message with even parity and odd parity.

 When the digit data is received, a parity checking circuit generates an error signal if the
total no of 1‘s is even in an odd parity system or odd in an even parity system. This parity check
can always detect a single bit error but cannot detect 2 or more errors with the same word. Odd
parity is used more often than even parity because even parity does not detect the situation where
all 0‘s are created by a short circuit or some other fault condition.

EXAMPLE:
1) In an even parity scheme, which of the following words contain error?
 (a) 10101010 (b) 11110110 (c) 10111001
SOL:

2) In an odd parity scheme, which of the following words contain error?
 (a) 10110111 (b) 10011010 (c) 11101010
SOL:

BASIC ELECTRONICS ENGINEERING

19

ERROR CORRECTING CODES
 A code is said to be an error–correcting code, if the code word can always be deduced from
an erroneous word. For a code to be a single bit error correcting code, the minimum distance of
that code must be three. The minimum distance of that code is the smallest no. of bits by which
any two code words must differ. A code with minimum distance of three can‘t only correct single
bit errors but also detect (but can‘t correct) two bit errors. The key to error correction is that it
must be possible to detect & locate erroneous digits. If the location of an error has been
determined, then by complementing the erroneous digit, the message can be corrected,
 One type of error correcting code is the Hamming code.
 These codes not only detect error but also correct them. These error correcting codes are
used normally in satellite communication, memories, networking, hard disk, CDROM, DVD etc.

HAMMING CODE:
 The Hamming code which is named after ‘Richard Hamming’ who invented it in 1950. It is
widely used for error correction in digital data communications and computer memory.
 Hamming code not only provides the detection of a bit error, but also identifies which bit is
in error so that it can be corrected. Thus Hamming code is called error detecting and correcting
code. The code uses a number of parity bits (dependent on the number of information bits)
located at certain positions in the code group.

PROCEDURE FOR WRITING HAMMING CODE:
i) Number of Parity Bits :
 The number of parity bits depends on the number of information bits. If the number of
information bits is designed ‘x’, then the number of parity bits, P is determined by the following
relationship:

For example, if we have four information bit, i.e. x = 4, then P is found by trial and error using the
above equation. Let P = 2. Then

Since 2P must be equal to or greater than x + P + 1, the relationship in equation is not satisfied.
 Hence we have to try with next value of P. Let P = 3.

 This value of P satisfies the relationship given in the equation, and therefore we can say
that three parity bits are required to provide single error correction for four information bits.

BASIC ELECTRONICS ENGINEERING

20

ii) Locations of the Parity Bits in the Code:
 Now we know that how to calculate the number of parity bits required to provide single
error correction for given number of information bits. In our example we have four information
bits and three parity bits. Therefore, the code is of seven bits. The rightmost bit is designated bit 1,
the next bit is bit 2, and so on, as shown below:

Bit 7, Bit 6, Bit 5, Bit 4, Bit 3, Bit 2, Bit 1
 The parity bits are located in the positions that are numbered corresponding to ascending
powers of two (1, 2, 4, 8 ...). Therefore, for 7 - bit code, locations for parity bits and information
bits are as shown below :

D7, D6, D5, P4, D3, P2, P1
Where symbol Pn designates a particular parity bit, Dn designates a particular information bit and
n is the location number.

iii) Assigning Values to Parity Bits:
 Now we know the format of the code. Let us see how to determine 1 or 0 value to each
parity bit. In Hamming code, each parity bit provides a check on certain other bits in the total
code; therefore, we must know the value of these others in order to assign the parity bit value. To
do this, we must write the binary number for each decimal location number as shown in the third
row of the following table.

Assignment of P1 :

 Looking at the Table, we can see that the binary location number of parity bit P1 has a 1 for
its rightmost digit. This parity bit checks all bit locations, including itself, that have 1’s in the same

location in the binary location numbers. Therefore, parity bit P1 checks bit locations 1, 3, 5 and 7,

and assigns P1 according to even or odd parity. For even parity Hamming code, it assigns P1 such
that bit locations 1, 3, 5, and 7 will have even parity.

Assignment of P2 :

 Looking at the Table, we can see that the binary location number of parity bit P2 has a 1 for
its middle bit. This parity bit checks all bit locations, including itself, that have is in the middle bit.

Therefore, parity bit P2 checks bit locations 2, 3, 6 and 7 and assigns P2 according to even or odd
parity.

Assignment of P4 :

 Looking at the Table, we can see that the binary location number of parity bit P4
has a 1 for its leftmost digit. This parity bit checks all bit locations, including itself, that have 1’s in

the leftmost bit. Therefore, parity bit P4 checks bit locations 4, 5, 6 and 7 and assigns P4 according
to even and odd parity.

BASIC ELECTRONICS ENGINEERING

21

7-bit HAMMING CODE
Example:
1) Encode the binary word 1011 into seven bit even parity hamming code.
SOL:

Detecting and Correcting an Error
 In the last section we have seen how to construct Hamming code for given number of
information bits. Now we will see how to use it to locate and correct an error. To do this, each
parity bit, along with its corresponding group of bits must be checked for proper parity. The
correct result of individual parity check is marked by 0 whereas wrong result is marked by 1.
After all parity checks, binary word is formed taking resulting bit for P1 as LSB. This word gives
bit location where error has occurred. If word has all bits 0 then there is no error in the Hamming
code.

Example:
2) Assume that the even parity Hamming code (0110011) is transmitted and that 0100011 is
received. The receiver does not know what was transmitted. Determine bit location where error
has occurred using received code.

BASIC ELECTRONICS ENGINEERING

22

SOL:

12-bit Hamming Code
 To transmit eight data bits, four parity bits located at positions 20, 21, 22 and 23 from left
are added to make a 12-bit code word which is then transmitted. The Word format would be as
shown below:

 Where the D bits are the data bits and the P bits are the parity bits.

 P1 is to be set to 0 or 1 so that it establishes even parity over bits 1, 3, 5, 7, 9, and 11 (i.e.
over bits P1 D3 D5 D7 D9 D11).

 P2 is to be set to 0 or 1 so that it establishes even parity over bits 2, 3, 6, 7, 10, and 11 (i.e.
over bits P2 D3 D6 D7 D10 D11).

 P3 is to be set to 0 or 1 so that it establishes even parity over bits 4, 5, 6, 7, and 12 (i.e. over
bits P4 D5 D6 D7 D12).

 P4 is to be set to 0 or 1 so that it establishes even parity over bits 8, 9, 10, 11 and 12 (i.e.
over bits P8 D9 D10 D11 D12).

Example:
3) (a) Given the 8-bit data word 01011011, generate the 12-bit composite word for the Hamming
code that corrects and detects single errors.

BASIC ELECTRONICS ENGINEERING

23

(b) A 1 2-bit hamming code word containing 8 bits of data and 4 parity bits is read from memory.
What is the original 8-bit word if the 12-bit read out is as follows.
(i) 1000 1110 1010
(ii) 1011 1000 0110
(iii) 1011 1111 0100
SOL:

D12 D11 D10 D9 P8 D7 D6 D5 P4 D3 P2 P1

0 1 0 1 0 1 0 1 0 1 1 1

15-bit Hamming Code

Example:

BASIC ELECTRONICS ENGINEERING

24

4)

SOL:
(a) For the given 11-bit group, the bit pattern is
D15 D14 D13 D12 D11 D10 D9 P8 D7 D6 D5 P4 D3 P2 P1

0 1 1 0 1 1 1 1 0 1 0 1 1 1 0

PRACTICE PROBLEMS
1) Determine the decimal numbers represented by the following binary numbers
 (a) 110101 (b) 11111111 (c) 1100.1011
SOL:

2) Convert the following decimal numbers into equivalent binary numbers
 (a) (13)10 (b) (0.65625)10 (c) (25.5)10
SOL:

BASIC ELECTRONICS ENGINEERING

25

(a)

(b)

(c)

BASIC ELECTRONICS ENGINEERING

26

3) Convert octal (623.77)8 to decimal, binary and hexadecimal
SOL:

BASIC ELECTRONICS ENGINEERING

27

4) Find the radix/base of 41 5=
SOL: Let

()
1 0 0

41 5

4 1 5

4 1 5

4 1 25

4 24

6

b
b

b b b

b

b

b

b

=

 +  = 

+ =

+ =

=

=

5) Determine the Hamming code for the information code 10111 with odd parity
SOL:

BASIC ELECTRONICS ENGINEERING

28

6) The Hamming code 101101101 is received. Correct it if any errors. There are four parity bits and odd
parity is used.
SOL:

7. Convert (1543)9 into base 10 & base 6

SOL: (1543)9=1×93+5×92+4×9+3×90 = (1173)10

BASIC ELECTRONICS ENGINEERING

29

8. Determine the possible base value for (302)/(20) = 12.1
SOL:

9. Convert i) (2311)16 = (?)10 = (?)2

 ii) (A44D)16 = (?)10 = (?)2

SOL:

10) Determine the base of the numbers for the following options to be correct.

 i)
14

2
2
= ii) 24 + 17 = 40

SOL:

 i) 14/2 = 2;
 Find decimal equivalent
 14=1 x r1 + 4 x r0 = r + 4
 2=2 x r0=2
 2=2 x r0=2

BASIC ELECTRONICS ENGINEERING

30

 (4+r)/2=2
 Solving this equation, we get r=0, Hence No base value.

 ii) 24+17=40;
 Find decimal equivalent
 24=2 x r1 + 4 x r0 = 2r + 4
 17=1 x r1 + 7 x r0 = r + 7
 40=4 x r1 + 0 x r0 = 4r + 0
 (2r + 4) + (r + 7) = 4r
 Solving this equation, we get r=11, base 11

11) Given that (16)10 = (100)b, Find the value of ‘b’.
SOL:

Given (16)10 = (100)b

1×b2 + 0×b1 + 0×b0= 16

b2=16
Base, b =4

BOOLEAN POSTULATES
 Axioms or Postulates of Boolean algebra are a set of logical expressions that we accept
without proof & also we can build a set of useful theorems, rules and properties of system. Each
axiom can be interpreted as the outcome of an operation performed by a logic gate.

I) Closure
 (a) : Closure with respect to the operator ‘+’
 When two binary elements are operated by operator ‘+’ the result is a unique binary
element(1 or 0).
 (b) : Closure with respect to the operator • (dot).
 When two binary elements are operated by operator • (dot), the result is a unique binary
element.
II) Identity element:
 An identity element with respect to +, designated by ‘0’.

A+0=0+A=A

 An identity element with respect to • (dot), designated by ‘1’

 A • 1 = 1 • A = A
III) Commutative Law:
 Commutative with respect to ‘+’

A + B = B + A
 Commutative with respect to ‘•’

A • B = B • A
IV) Distributive Law:
 a) Distributive property of ‘•’ over ‘+’

A•(B+C) = (A•B)+(A•C)
 b) Distributive property of ‘+’ over ‘•’

A+(B•C) = (A+B)•(A+C)
V) Complement:
 For every binary element, there exists complement element.

BASIC ELECTRONICS ENGINEERING

31

For example, if A is an element, we have A is a complement of A. i.e. if A = 0, A = 1 and if A = 1,

A = 0.

A+ A = 1

A• A = 0
VI) There exists at least two elements, say A and B in the set of binary elements such that A ≠ B.

BASIC THEOREMS/BASIC LAWS IN BOOLEAN ALGEBRA

1) PRINCIPLE OF DUALITY:

This principle states that one expression can be obtained from the other in each pair by

➢ interchanging every element i.e., every 0 with 1, every 1 with 0
➢ interchanging the operators i.e., every (+) with (•) and every (•) with (+).

This important property of Boolean algebra is called principle of duality.

Example:

THEOREMS:

2) Null Law:
 a) A + 1 = 1
 b) A•0= 0
 Proof: a)

 b) A · 0 =0

A · 0 = A · 0 + 0
 = A · 0 + A·A’

BASIC ELECTRONICS ENGINEERING

32

 = A · (0+A’)
 = AA’

 = 0 (∵ Duality)

3) Involution
Theorem:

 A = A
 Proof:

0

1

0

Let

A

A

A

A A

=

=

=

=

4) Idempotence Laws:
 a) A + A = A (b) A · A = A
Proof: Proof:

5) Absorption Laws:
 a) A + AB = A (b) A · (A + B) = A
Proof: Proof:

6) Redundant Literal Rule (RLR): {Simplification}

 a) A + A B = A + B (b) A·(A + B) = AB
 Proof: Proof:

BASIC ELECTRONICS ENGINEERING

33

7) Association Law:
 a) A + (B + C) = (A + B) + C
 Proof:

 b) A·(B·C) = (A·B)·C
 Proof:

8) Consensus Theorem: (Included Factor Theorem)

 Proof:

BASIC ELECTRONICS ENGINEERING

34

 Proof:

Note:

9) De Morgan’s Theorem:
Law-1:
 This law states that the complement of a sum of variables is equal to the product of their
individual complements. i.e.

Proof:

Law-2:
 This law states that the complement of the product of the variables is equal to the sum of
their individual complements. i.e.

Proof:

Note: These laws can be extended to any number of variables, i.e.

BASIC ELECTRONICS ENGINEERING

35

10) Transposition Theorem:

Proof:

EXAMPLES:
1) Simplify the expression

SOL:

2) Simplify the expression

SOL:

BASIC ELECTRONICS ENGINEERING

36

3) Reduce the expression

SOL:

4) Reduce the expression

SOL:

BASIC ELECTRONICS ENGINEERING

37

5) Simplify the expression

SOL:

BASIC ELECTRONICS ENGINEERING

38

LOGIC GATES

 Logic gates are the fundamental building blocks of digital systems. A gate is defined as a
logic circuit with one or more inputs and only one output which implement a desired logic
function.
 The interconnection of gates to perform a variety of logical operations is called logic
design. The logic gates are usually embedded in LSI and VLSI circuits.
 The Inputs and outputs of logic gates can occur only in two levels. These two levels are
termed HIGH and LOW or TRUE and FALSE or ON and OFF or simply 1 and 0.
The terminology used for logic levels is shown in the fig.

 A table which lists all the possible combinations of input variables and the corresponding
outputs is called a truth table. It shows how the logic circuit's output responds to various
combinations of logic levels at the inputs.

LEVEL LOGIC
 The level logic may be positive logic or negative logic.
Positive and Negative Logic Designation:
 The binary signals at the inputs or outputs of any gate can have one of the two values
except during transition. One signal levels represents logic 1 and the other logic 0. Since two signal
values are assigned two logic values, there exist two different assignments of signals to logic.
 Logics 1 and 0 are generally represented by different voltage levels. Consider the two
values of a binary signal as shown in the following Fig. One value must be higher than the other
since the two values must be different in order to distinguish between them. We designate the
higher voltage level by H and lower voltage level by L. There are two choices for logic values
assignment. Choosing the high-level (H) to represent logic 1 as shown in (a) defines a positive
logic system. Choosing the low level L to represent logic-1 as shown in (b), defines a negative
logic system.

BASIC ELECTRONICS ENGINEERING

39

TYPES OF LOGIC GATES
 The logic gates are of three types.
1) Basic gates : AND, OR, NOT
2) Universal gates : NAND, NOR
3) Desired gates : EX-OR, EX-NOR

i) AND GATE:
 It is represented by ‘·’(dot). It has two or more inputs but only one output. The output
assumes the logic 1 state only when each of its inputs is at logic 1 state. The output assumes the
logic 0 state even if one of its inputs is at logic 0 state. The AND gate is also called an All or Nothing
gate. The operation of AND gate is similar to the switches in series. AND gate operation is nothing
but the multiplication of all inputs.
 The logic symbol and truth table of AND gate are shown in the following fig.

➢ IC 7408 contains 4 two input AND gates
➢ IC 7411 contains 3 three input AND gates
➢ IC 7421 contains 2 four input AND gates

 The timing diagram of AND gate is shown in the following fig.

BASIC ELECTRONICS ENGINEERING

40

ii) OR GATE:
 It is represented by ‘+’ (plus). It has two or more inputs but only one output. The output
assumes the logic 1 state only when one of its inputs is at logic 1 state. The output assumes the
logic 0 state even if each input is at logic 0 state. The OR gate is also called an any or All gate. Also
called an inclusive OR gate because it includes the condition both the inputs can be present.
 OR gate operation is nothing but the addition of all inputs. The logic symbol and truth table
of OR gate are shown in the following fig.

➢ IC 7432 Contains 4 two input OR gates.

The timing diagram of OR gate is shown in the following fig

NOTE:
 From the truth tables of AND & OR gates, the positive logic can be represented by AND gate
and negative logic can be represented by OR gate.

BASIC ELECTRONICS ENGINEERING

41

iii) NOT GATE:
 It is represented by ‘―’(bar). It is also called an Inverter or Buffer. It has only one input &
one output in which the output is always the compliment of its input. The output assumes logic 1
when input is logic 0 & output assume logic 0 when input is logic 1.
 The logic symbol and truth table of NOT gate are shown in the fig.

➢ IC7404 contains 6 inverter gates.
➢ Logic circuits which use AND/OR/INVERT gate are called AOI logic.
➢ Logic circuits which use AND/OR gate are called AO logic.

UNIVERSAL GATES
 The NAND and NOR gates are widely used and are readily available in most integrated
circuits. A major reason for the widespread use of these gates is that they are both UNIVERSAL
gates, universal in the sense that both can be used for AND operators, OR operators, as well as
Inverter. Thus, we see that a complex digital system can be completely synthesized using only
NAND gates or NOR gates.

(iv) NAND GATE:
 NAND gate means NOT AND i.e, AND output is NOTed. So NAND gate is a combination of
AND & NOT gates. The little invert bubble (small circle) on the right end of the symbol means to
invert the output of AND.
 The logic symbol and truth table of NAND gate are shown in the fig.

 NAND assumes Logic 0 when each of inputs assumes logic 1. Otherwise the output is logic
1.

v) NOR GATE
 NOR gate is NOT gate with OR gate. i.e, OR gate is NOTed or an inverted OR function. The
standard logic symbol and truth table for the NOR gate are shown in Fig.

BASIC ELECTRONICS ENGINEERING

42

 The unique property of NOR gate is that it produces an output of logic ‘1’ if and only if all its
inputs are logic ‘0’.

NAND & NOR GATES AS UNIVERSAL GATES

(I) THE NAND GATE AS A UNIVERSAL GATE:

(II) THE NOR GATE AS A UNIVERSAL GATE:

BASIC ELECTRONICS ENGINEERING

43

vi) EX-OR GATE (EXCLUSIVE OR)
 The exclusive OR gate is sometimes referred to as the “Odd but not the even gate”. It is
often shortened as “XOR gate”. The logic diagram is shown in Fig. with its Boolean expression. The
symbol ⊕ means the terms are XORed together.
 It has 2 inputs & only 1 output. It assumes output as 1 when inputs are not equal and it is
called anti-coincidence gate or inequality detector. The logic symbol and truth tables are shown in
the fig.

➢ TTL IC 746 has 4 EX-OR gate
➢ CMOS IC 74C8C has 4 EX-OR gates.

PROPERTIES OF EX-OR GATE:

BASIC ELECTRONICS ENGINEERING

44

XOR GATE USING AND-OR-NOT GATES:

vii) EX-NOR GATE
 The Exclusive NOR gate is sometimes referred to as the ‘COINCIDENCE’ or ‘EQUIVALENCE’
gate. This is often shortened as ‘XNOR’ gate. The logic diagram and truth table are shown in Fig. It
is a combination of EX-OR and NOT gates. The invert of XOR function denoted by symbol ʘ.

BASIC ELECTRONICS ENGINEERING

45

COMBINATIONAL LOGIC CIRCUITS

ADDERS
 Digital computers perform various arithmetic operations and the most basic arithmetic
operation is the addition of two binary digits .i.e, 4 basic possible operations are:

 The first three operations produce a sum whose length is one digit, but when augends and
addend bits are equal to 1, the binary sum consists of two digits. The higher significant bit of this
result is called a carry. A combinational circuit that performs the addition of two bits is called a
half-adder. One that performs the addition of 3 bits (two significant bits & previous carry) is
called a full adder & two half adders can be employed to implement a full-adder.

HALF-ADDER
 A Half Adder is a combinational circuit with two binary inputs (augends and addend bits)
and two binary outputs (sum and carry bits.) It adds the two inputs (A and B) and produces the
sum (S) and the carry (C) bits. It is an arithmetic circuit used to perform the arithmetic operation
of addition of two single bit words. The truth table and block diagram of half adder are shown in
the following figs.

K-map simplification for sum & carry:

BASIC ELECTRONICS ENGINEERING

46

 The Sum(S) bit and the carry (C) bit, according to the rules of binary addition, the sum (S)
is the X-OR of A and B. Therefore,

The carry (C) is the AND of A and B (it is 0 unless both the inputs are 1). Therefore,

C = AB
A half-adder can be realized by using one X-OR gate and one AND gate as shown in fig.

Realization of Half-adder using NAND logic:

BASIC ELECTRONICS ENGINEERING

47

Realization of Half-adder using NOR logic:

FULL ADDER
 A Full-adder is a combinational circuit that adds two bits and a carry and outputs a sum bit
and a carry bit. The full-adder adds the bits A and B and the carry from the previous column called

the carry-in Cin and outputs the sum bit S and the carry bit called the carry-out Cout . The variable

S gives the value of the least significant bit of the sum. The variable Cout gives the output carry.
 The block diagram and truth table of full adder are shown in the following fig. The eight
rows under the input variables designate all possible combinations of 1s and 0s that these
variables may have. The 1s and 0s for the output variables are determined from the arithmetic
sum of the input bits. When all the bits are 0s, the output is 0. The S output is equal to 1 when only

BASIC ELECTRONICS ENGINEERING

48

1 input is equal to 1 or when all the inputs are equal to 1. The Cout has a carry of 1 if two or three
inputs are equal to 1.

From the truth table, a circuit that will produce the correct sum and carry bits in response to
every possible combination of A, B and Cin is described by

The sum term of the full-adder is the X-OR of A,B, and Cin, i.e, the sum bit the modulo sum of the
data bits in that column and the carry from the previous column. The logic diagram of the full-
adder using two X-OR gates and two AND gates (i.e, Two half adders) and one OR gate is as shown
in the fig.

BASIC ELECTRONICS ENGINEERING

49

Realization of full-adder using AOI logic:

Realization of full-adder using NAND logic:

BASIC ELECTRONICS ENGINEERING

50

Realization of full-adder using NOR logic:

NOTE:

BASIC ELECTRONICS ENGINEERING

51

SEQUENTIAL LOGIC CIRCUITS

A sequential logic circuit is one whose outputs depend not only on its current inputs, but also on
the past sequence of inputs.
 A block diagram of a sequential circuit is shown in Fig. A Sequential circuit can be regarded
as a collection of memory elements and combinational circuit, as shown in Fig. A feedback path is
formed by using memory elements, input to which is the output of combinational circuit. The
binary information stored in memory element at any given time is defined as the state of
sequential circuit at that time. Present contents of memory elements are referred as the present
state. The combinational circuit receive the signals from external input and from the memory
output and determines the external output. They also determine the condition and binary values
to change the state of memory. The new contents of the memory elements are referred as next
state and depend upon the external input and present state.
 Hence, a sequential circuit can be completely specified by a time sequence of inputs,
outputs and the internal states. In general, clock is used to control the operation. The clock
frequency determines the speed of operation of a sequential circuit.

COMPARISON BETWEEN COMBINATIONAL AND SEQUENTIAL CIRCUITS

COMBINATIONAL LOGIC CIRCUITS SEQUENTIAL LOGIC CIRCUITS

Output is a function of the present inputs
(Time Independent Logic).

Output is a function of clock, present
inputs and the previous states of the

system.

Do not have the ability to store data
(state).

Have memory to store the present states
that is sent as control input (enable) for

the next operation.
It does not require any feedback. It simply

outputs the input according to the logic
designed.

It involves feedback from output to input
that is stored in the memory for the next

operation.
Used mainly for Arithmetic and Boolean

operations.
Used for storing data (and hence used in

RAM).
Logic gates are the elementary building

blocks.
Flip flops (binary storage device) are the

elementary building unit.
Independent of clock and hence does not

require triggering to operate.
Clocked (Triggered for operation with

electronic pulses).
Speed is fast Speed is slow

BASIC ELECTRONICS ENGINEERING

52

This is time independent This is time dependent

It is designed easy
It is designed tough as compared to

combinational circuit

Example:
Adder [1+0=1; Dependency only on

present inputs i.e., 1 and 0].

Example:
Counter [Previous O/P +1=Current O/P;
Dependency on present input as well as

previous state].

TYPES OF SEQUENTIAL CIRCUITS
 Sequential circuits are broadly classified into two main categories, known as synchronous
or clocked and asynchronous or unclocked sequential circuits, depending on the timing of their
signals.
Synchronous Sequential circuits:
 A sequential circuit whose behaviour can be defined from the knowledge of its signal at
discrete instants of time is referred to as a synchronous sequential circuit. In these systems, the
memory elements are affected only at discrete instants of time. The synchronization is achieved
by a timing device known as a system clock, which generates a periodic train of clock pulses. The
outputs are affected only with the application of a clock pulse. The rate at which the master clock
generates pulses must be slow enough to permit the slowest circuit to respond. This limits the
speed of all circuits. Synchronous circuits have gained considerable domination and wide
popularity.
Asynchronous Sequential circuits:
 A sequential circuit whose behaviour depends upon the sequence in which the input
signals change is referred to as an asynchronous sequential circuit. The output will be affected
whenever the input changes. The commonly used memory elements in these circuits are time-
delay devices. There is no need to wait for a clock pulse. Therefore, in general, asynchronous
circuits are faster than synchronous sequential circuits. However, in an asynchronous circuit,
events are allowed to occur without any synchronization. And in such a case, the system becomes
unstable. Since the designs of asynchronous circuits are more tedious and difficult, their uses are
rather limited.
 The clocked sequential circuits use a memory element known as Flip-Flop. A flip-flop is an
electronic circuit used to store 1-bit of information, and thus forms a 1-bit memory cell. These
circuits have two outputs, one giving the value of binary bit stored in it and the other gives the
complemented value.

Differences between synchronous sequential circuit & Asynchronous sequential circuit

BASIC ELECTRONICS ENGINEERING

53

MODES OF TRIGGERING
 Flip-flops are synchronous sequential circuits. This type of circuit works with the
application of a synchronization mechanism, which is termed as a clock. Based on the specific
interval or point in the clock during or at which triggering of the flip-flop takes place, it can be
classified into two different types—level triggering and edge triggering.
 A clock pulse starts from an initial value of 0, goes momentarily to 1, and after a short
interval, returns to the initial value.

a) Level Triggering of Flip-flops:
 If a flip-flop gets enabled when a clock pulse goes HIGH and remains enabled throughout
the duration of the clock pulse remaining HIGH, the flip-flop is said to be a level triggered flip-flop.
If the flip-flop changes its state when the clock pulse is positive, it is termed as a positive level
triggered flip-flop. On the other hand, if a NOT gate is introduced in the clock input terminal of the
flip-flop, then the flip-flop changes its state when the clock pulse is negative, it is termed as a
negative level triggered flip-flop.
 The main drawback of level triggering is that, as long as the clock pulse is active, the flip-
flop changes its state more than once or many times for the change in inputs. If the inputs do not
change during one clock pulse, then the output remains stable. On the other hand, if the frequency
of the input change is higher than the input clock frequency, the output of the flip-flop undergoes
multiple changes as long as the clock remains active. This can be overcome by using either master-
slave flip-flops or the edge-triggered flip-flop.

b) Edge Triggering of Flip-flops:
 A clock pulse goes from 0 to 1 and then returns from 1 to 0. There are two types of edge
triggering; they are the positive edge (0 to 1 transition) and the negative edge (1 to 0 transition).

BASIC ELECTRONICS ENGINEERING

54

The term edge-triggered means that the flip-flop changes its state only at either the positive or
negative edge of the clock pulse.

CLOCKED S-R FLIPFLOP

a) Positive edge triggered SR flip-flop:
 The Fig. shows the positive edge triggered clocked SR flip-flop. The circuit is
similar to SR latch except enable signal is replaced by the clock pulse (CP) followed by the positive
edge detector circuit. The edge detector circuit is a differentiator.

 The Fig. shows input and output waveforms for positive edge triggered clocked SR flip-flop.
As shown in Fig., the circuit output responds to the S and R inputs only at the positive edges of the
clock pulse. At any other instants of time, the SR flip-flop will not respond to the changes in input.
 The Fig. shows the logic symbol and truth table of clocked SR flip-flop.

BASIC ELECTRONICS ENGINEERING

55

b) Negative edge triggered SR flip-flop:

 In the negative edge triggered SR flip-flop, the negative edge detector circuit is used and
the circuit output responds at the negative edges of the clock pulse. The Fig. shows the logic
symbol, truth table, and input and output waveforms for negative edge triggered SR flip-flop. The
bubble at the dock input indicates that the flip-flop is negative edge triggered.

BASIC ELECTRONICS ENGINEERING

56

EXCITATION TABLE OF R-S FLIP-FLOP

 During the design process we know, from the transition table, the sequence of states, i.e.,
the transition from each present state to its corresponding next state. From this information we
wish to find the flip-flop input conditions that will cause the required transition. For this reason,
we need a table that lists the required inputs for a given change of state. Such a table is known as
an excitation table of the flip-flop.
 We can derive the excitation tables for flip-flops from their truth tables. The excitation

table consists of two columns Qn and Qn+1, and a column for each input to show how the required
transition can be achieved.
 The following tables show the truth table and excitation tables for RS flip-flop,
respectively. As shown in the table, there are four possible transitions from the present
state to the next state. For each transition, the required input condition is derived from the
information available in the truth table. Let us see the process by examining each case.

BASIC ELECTRONICS ENGINEERING

57

0 → 0 Transition:
 The present state of the flip-flop is 0 and is to remain 0 when a clock pulse is applied.
Looking at truth table of RS flip-flop we can understand that, this can happen either when R = S =
0 (no-change condition) or when R = 1 and S = 0. Thus, S has to be at 0, but R can be at either level.
The table indicates this with a "0" under S and an "X" (don't care) under R.

0 → 1 Transition:
 The present state is 0 and is to change to 1. This can happen only when S = 1 and R = 0 (set
condition). Therefore, S has to be 1 and R has to be 0 for this transition to occur.
1 → 0 Transition:
 The present state is 1 and is to change to a 0. This can happen only when S = 0 and R = 1
(reset condition). Therefore, S has to be 0 and R has to be 1 for this transition to occur.
1 → 1 Transition:
 The present state is 1 and is to remain 1. This can happen either when S = 1 and R = 0 (set
condition) or when S = 0 and R = 0 (no change condition). Thus R has to be 0, but S can be at either
level. The table indicates this with "X" under and "0" under R.

CLOCKED D FLIP-FLOP:

 The internal circuit of edge triggered D-Flipflop is shown in the fig.

BASIC ELECTRONICS ENGINEERING

58

3) CLOCKED J-K FLIP-FLOP:

BASIC ELECTRONICS ENGINEERING

59

The internal circuit of edge triggered JK-Flipflop is shown in the fig.

RACE AROUND CONDITION:
 When j =1 k = 1 and clk = 1; Q output will toggle as long as CLK is high. Thus the output will
be unstable creating a race-around problem with this basic JK circuit.
 This problem is avoided by ensuring that the clock input is at logic “1” only for a very short
time, or to produce a more sophisticated JK flip-flop circuit called a Master–slave flip-flop.

4) CLOCKED T- FLIPFLOP:

BASIC ELECTRONICS ENGINEERING

60

EXCITATION TABLE OF J-K FLIP-FLOP

EXCITATION TABLE OF ‘D’ FLIP-FLOP

BASIC ELECTRONICS ENGINEERING

61

EXCITATION TABLE OF ‘T’ FLIP-FLOP

SHIFT REGISTERS
 Registers are the devices used to store the data bits. The bits stored in such registers can be
made to move within the registers and/or in/out of the registers by applying clock pulses. Such
registers are called shift registers. An n-bit shift register can be formed by cascading ‘n’ flip-flops
where each flip-flop stores a single bit of information. Here the clear line is used to reset each flip-
flop which in turn clears the entire register.

 Data may be available in parallel form or in serial form. Multi-bit data is said to be in
parallel form when all the bits are available (accessible) simultaneously. The data is said to be in
serial form when the data bits appear sequentially (one after the other, in time) at a single
terminal. Data may also be transferred in parallel form or in serial form. Parallel data transfer is
the simultaneous transmission of all bits of data from one device to another. Serial data transfer is
the transmission of one bit of data at a time from one device to another. Serial data must be
transmitted under the synchronization of a clock, since the clock provides the means to specify the
time at which each
new bit is sampled.
 As a flip-flop (FF) can store only one bit of data, a 0 or a 1, it is referred to as a single-bit
register. When more bits of data are to be stored, a number of FFs are used. A register is a set of
FFs used to store binary data. The storage capacity of a register is the number of bits (Is and Os) of
digital data it can retain. Loading a register means setting or resetting the individual FFs, i.e.
inputting data into the register so that their states correspond to the bits of data to be stored.

https://www.electrical4u.com/latches-and-flip-flops/

BASIC ELECTRONICS ENGINEERING

62

Loading may be serial or parallel. In serial loading, data is transferred into the register in serial
form, i.e. one bit at a time, whereas in parallel loading, the data is transferred into the register in
parallel form meaning that all the FFs are triggered into their new states at the same time. Parallel
input requires that the SET and/or RESET controls of every FF be accessible.
 A register may output data either in serial form or in parallel form. Serial output means
that the data is transferred out of the register, one bit at a time serially. Parallel output means that
the entire data stored in the register is available in parallel form, and can be transferred out at the
same time.
 Shift registers are a type of logic circuits closely related to counters. They are used basically
for the storage and transfer of digital data. The basic difference between a shift register and a
counter is that, a shift register has no specified sequence of states except in certain very
specialized applications, where as a counter has a specified sequence of states.

i) Buffer Registers:

 Some registers do nothing more than storing a binary word. The buffer register is the
simplest of registers. It simply stores the binary word. The buffer may be a controlled buffer. Most
of the buffer registers use D flip-flops.
 The Figure shows a 4-bit buffer register. The binary word to be stored is applied to the data
terminals. On the application of clock pulse, the output word becomes the same as the word
applied at the input terminals, i.e. the input word is loaded into the register by the application of
clock pulse.

ii) Controlled Buffer Register :

 The Figure shows a controlled buffer register. If CLR goes LOW, all the FFs are RESET and
the output becomes, Q = 0000.

 When CLR is HIGH, the register is ready for action. LOAD is the control input. When LOAD
is HIGH, the data bits X can reach the D inputs of FFs. At the positive-going edge of the next clock
pulse, the register is loaded, i.e.

BASIC ELECTRONICS ENGINEERING

63

When LOAD is LOW, the X bits cannot reach the FFs. At the same time, the inverted signal LOAD is
HIGH. This forces each flip-flop output to feed back to its data input. Therefore, data is circulated
or retained as each clock pulse arrives. In other words, the contents of the register remain
unchanged in spite of the clock pulses. Longer buffer registers can be built by adding more FFs.

iii) Data Transmission in Shift Registers :

 A number of FFs connected together such that data may be shifted into and shifted out of
them is called a shift register. Data may be shifted into or out of the register either in serial form
or in parallel form.
 So, there are four basic types of shift registers:

a) serial-in, serial-out (SISO)
 b) serial-in, parallel-out (SIPO)
 c) parallel-in, serial-out (PISO)

 d) parallel-in, parallel-out (PIPO)
 The process of data shifting in these registers is illustrated in Figure. All of these
configurations are commercially available as TTL MSU LSI circuits. Data may be rotated left or
right. Data may be shifted from left to right or right to left at will, i.e. in a bidirectional way. Also,
data may be shifted in serially (in either way) or in parallel and shifted out serially (in either way)
or in parallel.

BASIC ELECTRONICS ENGINEERING

64

iv) Serial-in, Serial-out, Shift Register:

 This type of shift register accepts data serially, i.e. one bit at a time, and also outputs data
serially. The logic diagram of a 4-bit serial-in, serial-out, shift-right, shift register is shown in
Figure.
 With four stages, i.e. four FFs, the register can store upto four bits of data. Serial data is
applied at the D input of the first FF. The Q output of the first FF is connected to the D input of the
second FF, the Q output of the second FF is connected to the D input of the third FF and the Q
output of the third FF is connected to the D input of the fourth FF. The data is outputted from the
Q terminal of the last FF.
 When serial data is transferred into a register, each new bit is clocked into the first FF at
the positive-going edge of each clock pulse. The bit that was previously stored by the first FF is
transferred to the second FF. The bit that was stored by the second FF is transferred to the third
FF, and so on. The bit that was stored by the last FF is shifted out.

v) Serial-in, Parallel-out, Shift Register:

 The Figure shows the logic diagram and the logic symbol of a 4-bit serial-in, parallel-out,
shift register. In this type of register, the data bits are entered into the register serially, but the
data stored in the register is shifted out in parallel form.
 Once the data bits are stored, each bit appears on its respective output line and all bits are
available simultaneously, rather than on a bit-by-bit basis as with the serial output. The serial-in,
parallel-out, shift register can be used as a serial-in, serial-out, shift register if the output is taken
from the Q terminal of the last FF.

BASIC ELECTRONICS ENGINEERING

65

vi) Parallel-in, Serial-out, Shift Register:

 For a parallel-in, serial-out, shift register, the data bits are entered simultaneously into
their respective stages on parallel lines, rather than on a bit-by-bit basis on one line as with serial
data inputs, but the data bits are transferred out of the register serially, i.e. on a bit-by-bit basis
over a single line.
 The Figure illustrates a 4-bit parallel-in, serial-out, shift register using D FFs. There are four
data lines A, B, C, and D through which the data is entered into the register in parallel form. The

signal Shift/ LOAD allows
(a) the data to be entered in parallel form into the register and

(b) the data to be shifted out serially from terminal Q4.

BASIC ELECTRONICS ENGINEERING

66

 When Shift/ LOAD line is HIGH, gates G1, G2, and G3 are disabled, but gates G4, G5, and G6

are enabled allowing the data bits to shift-right from one stage to the next. When Shift/ LOAD line

is LOW, gates G4, G5, and G6 are disabled, whereas gates G1, G2, and G3 are enabled allowing the
data input to appear at the D inputs of the respective FFs.
 When a clock pulse is applied, these data bits are shifted to the Q output terminals of the
FFs and, therefore, data is inputted in one step. The OR gate allows either the normal shifting
operation or the parallel data entry depending on which AND gates are enabled by the level on the

Shift/ LOAD input.

vii) Parallel-in, Parallel-out, Shift Register :

 In a parallel-in, parallel-out, shift register, the data is entered into the register in parallel
form and also the data is taken out of the register in parallel form. Immediately following the
simultaneous entry of all data bits, the bits appear on the parallel outputs.
 The Figure shows a 4-bit parallel-in, parallel-out, shift register using D FFs. Data is applied
to the D input terminals of the FFs. When a clock pulse is applied, at the positive-going edge of that
pulse, the D inputs are shifted into the Q outputs of the FFs. The register now stores the data. The
stored data is available instantaneously for shifting out in parallel form.

viii) Bidirectional Shift Register:

 A bidirectional shift register is one in which the data bits can be shifted from left to right or
from right to left.
 The Figure shows the logic diagram of a 4-bit serial-in, serial-out, bidirectional (shift-left,

shift-right) shift register. Right/ Left is the mode signal. When Right/ Left is a 1, the logic circuit

works as a shift-right shift register. When Right/ Left is a 0, it works as a shift-left shift register.

The bidirectional operation is achieved by using the mode signal and two AND gates and one OR
gate for each stage as shown in Figure.

BASIC ELECTRONICS ENGINEERING

67

 A HIGH on the Right/ Left control input enables the AND gates G1, G2, G3, and G4 and

disables the AND gates G5, G6, G7, and G8, and the state of Q output of each FF is passed through
the gate to the D input of the following FF. When a clock pulse occurs, the data bits are then
effectively shifted one place to the right.

 A LOW on the Right/ Left control input enables the AND gates G5, G6, G7, and G8 and

disables the AND gates G1, G2, G3, and G4 and the Q output of each FF is passed through the gate to
the D input of the preceding FF. When a clock pulse occurs, the data bits are then effectively
shifted one place to the left. Hence the circuit works as a bidirectional shift register.

ix) Universal Shift Registers :

 A register capable of shifting in one direction only is a unidirectional shift register. One that
can shift in both directions is a bidirectional shift register. If the register has both shifts and
parallel load capabilities, it is referred to as a universal shift register. So a universal shift register
is a bidirectional register, whose input can be either in serial form or in parallel form and whose
output also can be either in serial form or in parallel form.
 A universal shift register can be realized using multiplexers. The Figure shows the logic
diagram of a 4-bit universal shift register. It consists of four D flip-flops and four multiplexers. The

four multiplexers have two common selection inputs S1, and S0. Input ‘0’ in each multiplexer is

selected when S1S0 = 00, input ‘1’ is selected when S1S0 = 01, and input 2 is selected when

S1S0 = 10 and input 3 is selected when S1S0 = 11. The selection inputs control the mode of

operation of the register according to the function entries in Table. When S1S0 = 0, the present
value of the register is applied to the D inputs of flip-flops. This condition forms a path from the
output of each flip-flop into the input of the same flip-flop. The next clock edge transfers into each
flip-flop the binary value it held previously, and no change of state occurs.

 When S1S0 = 01, terminal ‘1’ of the multiplexer inputs have a path to the D inputs of the

flip-flops. This causes a shift-right operation, with the serial input transferred into flip-flop A4.

When S1S0 = 10, a shift-left operation results with the other serial input going into flip-flop A1.

Finally when S1S0 = 11, the binary information on the parallel input lines is transferred into the
register simultaneously during the next clock edge.

BASIC ELECTRONICS ENGINEERING

68

COUNTERS
 A digital counter is a set of flip-flops (FFs) whose states change in response to pulses
applied at the input to the counter. The FFs are interconnected such that their combined state at
any time is the binary equivalent of the total number of pulses that have occurred up to that time.
Thus, as its name implies, a counter is used to count pulses.
 A counter can also be used as a frequency divider to obtain waveforms with frequencies
that are specific fractions of the clock frequency. They are also used to perform the timing
function as in digital watches, to create time delays, to produce non-sequential binary counts, to
generate pulse trains, and to act as frequency counters, etc.
 Counters may be asynchronous counters or synchronous counters. Asynchronous counters
are also called ripple counters. The ripple counter is the simplest type of counter, the easiest to
design and requires the least amount of hardware. In ripple counters, the FFs within the counter
are not made to change the states at exactly the same time. This is because the FFs are not
triggered simultaneously. The clock does not directly control the time at which every stage
changes state. An asynchronous counter uses ‘T’ FFs to perform a counting function. The actual
hardware used is usually J-K FFs connected in toggle mode, i.e. with Js and Ks connected to logic 1.
 The asynchronous counter has a disadvantage, in so far as the unwanted spikes are
concerned. This limitation is overcome in parallel counters. The asynchronous counter is called
ripple counter because when the counter, for example, goes from 1111 to 0000, the first stage

BASIC ELECTRONICS ENGINEERING

69

causes the second to flip, the second causes the third to flip, and the third causes the fourth to flip,
and so on. In other words, the transition of the first stage ripples through to the last stage.
 If there is a gate that will AND during any state, a brief spike will be seen at the gate output
every time the counter goes from 1111 to 0000.
 Ripple counters are also called serial or series counters.
 Synchronous counters are clocked such that each FF in the counter is triggered at the same
time. This is accomplished by connecting the clock line to each stage of the counter. Synchronous
counters are faster than asynchronous counters, because the propagation delay involved is less.

COMPARISON BETWEEN ASYNCHRONOUS COUNTERS & SYNCHRONOUS COUNTERS

UP/DOWN COUNTER:
 A counter may be an up-counter or a down-counter. An up-counter is a counter which
counts in the upward direction, i.e. 0, 1, 2, 3,..., N.
 A down-counter is a counter which counts in the downward direction, i.e. N, N- 1, N- 2, N-
3, ..., 1, 0.
 Each of the counts of the counter is called the state of the counter. The number of states
through which the counter passes before returning to the starting state is called the modulus of
the counter. Hence, the modulus of a counter is equal to the total number of distinct states
(counts) including zero that a counter can store.
 In other words, the number of input pulses that causes the counter to reset to its initial
count is called the modulus of the counter. Since a 2-bit counter has 4 states, it is called a mod-4
Counter. It divides the input clock signal frequency by 4; therefore, it is also called a divide-by-4

BASIC ELECTRONICS ENGINEERING

70

counter. It requires two FFs. Similarly, a 3-bit counter uses 3 FFs and has 23 = 8 states. It divides

the input clock frequency by 23, i.e. 8.

 In general, an n-bit counter will have ‘n’ FFs and 2n states, and divides the input frequency

by 2n. Hence, it is a divide-by-2n counter.

MOD-N COUNTER:
 A counter may have a shortened modulus. This type of counter does not utilize all the
possible states. Some of the states are unutilized, i.e. invalid. The number of Flip-flops required to

construct a mod-N counter equals the smallest it for which N≤ 2n. A mod-N counter divides
the input frequency by N, hence, it is called a divide-by-N counter.
 In an asynchronous counter, the invalid states are bypassed by providing a suitable
feedback. In a synchronous counter, the invalid states are taken care of by treating the
corresponding excitations as don't cares.

ASYNCHRONOUS COUNTERS

i) Two-bit ripple up-counter using negative edge-triggered flip-flops:

 The 2-bit up-counter counts in the order 0, 1, 2, 3, 0, 1,..., i.e. 00, 01, 10, 11, 00, 01,...,etc.
The Figure shows a 2-bit ripple up- counter, using negative edge-triggered J-K FFs, and its timing
diagram.

 The counter is initially reset to 00. When the first clock pulse is applied, FF1 toggles at the

negative-going edge of this pulse, therefore, Q1 goes from LOW to HIGH. This becomes a positive-

going signal at the clock input of FF2. So, FF2 is not affected, and hence, the state of the counter

after one clock pulse is Q1 =1 and Q2 = 0, i.e. 01.

 At the negative-going edge of the second clock pulse, FF1 toggles. So, Q1 changes from HIGH

to LOW and this negative-going signal applied to CLK of FF2 activates FF2, and hence, Q2 goes from

LOW to HIGH. Therefore, Q1 = 0 and Q2 = 1, i.e. 10 is the state of the counter after the second clock
pulse.

 At the negative-going edge of the third clock pulse, FF1 toggles. So Q1 changes from 0 to 1.

This becomes a positive-going signal to FF2, hence, FF2 is not affected. Therefore, Q2 =1 and Q1 = 1,
i.e. 11 is the state of the counter after the third clock pulse. At the negative-going edge of the

fourth clock pulse, FF1 toggles. So, Q1 goes from 1 to 0. This negative-going signal at Q1 toggles

FF2, hence, Q2 also changes from 1 to 0. Therefore, Q2 = 0 and Q1 =0 i.e. 00 is the state of the
counter after the fourth clock pulse. For subsequent clock pulses, the counter goes through the

BASIC ELECTRONICS ENGINEERING

71

same sequence of states. So, it acts as a mod-4 counter with Q1 as the LSB and Q2 as the MSB. The
counting sequence is thus 00, 01, 10, 11, 00, 01,..., etc.

ii) Two-bit ripple down-counter using negative edge-triggered flip-flops:

 A 2-bit down-counter counts in the order 0, 3, 2, 1, 0, 3,..., i.e. 00,11 ,10, 01, 00, 11,…… etc.
The Figure shows a 2-bit ripple down-counter, using negative-edge triggered J-K FFs, and its
timing diagram.

 For down counting, 1Q of FF1 is connected to the clock of FF2. Let initially all the FFs be

reset, i.e. let the count be 00. At the negative-going edge of the first clock pulse, FF1 toggles, so, Q1

goes from 0 to 1 and 1Q goes from 1 to 0. This negative-going signal at 1Q applied to the clock

input of FF2, toggles FF2 and, therefore, Q2 goes from 0 to 1. So, after one clock pulse Q2 = 1 and Q1
= 1, i.e. the state of the counter is 11.

 At the negative-going edge of the second clock pulse, Q1 changes from 1 to 0 and 1Q from 0

to 1. This positive-going signal at 1Q , does not affect FF2 and, therefore, Q2 remains at 1. Hence,

the state of the counter after the second clock pulse is 10.

 At the negative-going edge of the third clock pulse, FF1 toggles. So, Q1 goes from 0 to 1 and

1Q from 1 to 0. This negative-going signal at 1Q toggles FF2 and, so, Q2 changes from 1 to 0. Hence,

the state of the counter after the third clock pulse is 01.

 At the negative-going edge of the fourth clock pulse, FF1 toggles. So, Q1 goes from 1 to 0 and

1Q from 0 to 1. This positive-going signal at 1Q does not affect FF2. So, Q2 remains at a 0. Hence,

the state of the counter after the fourth clock pulse is 00.
 For subsequent clock pulses the counter goes through the same sequence of states, i.e. the
counter counts in the order 00, 11, 10, 01,00, and 11……..

iii) Two-bit ripple up-down counter using negative edge-triggered flip-flops:
 As the name indicates an up-down counter is a counter which can count both in upward
and downward directions. An up-down counter is also called a forward/backward counter or a
bidirectional counter. So a control signal or a mode signal M is required to choose the direction of

count. When M=1 for up counting, Q1 is transmitted to clock of FF2 and when M = 0 for down

counting, 1Q is transmitted to clock of FF2. This is achieved by using two AND gates and one OR

gate as shown in figure. The external clock signal is applied to FF1.

BASIC ELECTRONICS ENGINEERING

72

DESIGN OF SYNCHRONOUS COUNTERS
 For a systematic design of synchronous counters, the following procedure is used.
Step 1: Number of flip flops:
 Based on the description of the problem, determine the required number n of the FFs-the

smallest value of n is such that the number of states N≤2n and the desired counting sequence.
Step 2: State diagram:
 Draw the state diagram showing all the possible states. A state diagram,
which can also be called the transition diagram, is a graphical means of depicting the sequence of
states through which the counter progresses. In case the counter goes to a particular state from
the invalid states on the next clock pulse, the same can also be included in the state diagram.
Step 3: Choice of flip-flops and excitation table:
 Select the type of flip-flops to be used and write the excitation table. An excitation table is a
table that lists the present state (PS), the next state (NS) and the required excitations.
Step 4: Minimal expressions for excitations:
 Obtain the minimal expressions for the excitations of the FFs using the K-maps drawn for
the excitations of the flip-flops in terms of the present states
and inputs.
Step 5: Logic diagram:
 Draw a logic diagram based on the minimal expressions.

